Please use this identifier to cite or link to this item: http://dspace.ensta.edu.dz/jspui/handle/123456789/405
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBADAOUI, Aymen-
dc.contributor.authorBIBET, Idris-
dc.contributor.authorLAKHDARI, Kheira (Directeur de thèse)-
dc.date.accessioned2025-11-09T09:44:37Z-
dc.date.available2025-11-09T09:44:37Z-
dc.date.issued2025-
dc.identifier.urihttp://dspace.ensta.edu.dz/jspui/handle/123456789/405-
dc.descriptionMémoire de fin d’étude du Master: Systèmes de Télécommunications et Réseaux: Alger: Ecole Nationale Supérieure des Technologie Avancées: 2025en_US
dc.description.abstractSkin cancer is one of the most common and deadly forms of cancer, for which early detection remains critical. In this paper, we provide a comprehensive review and technical comparison of artificial intelligence (AI) techniques for skin lesion analysis.We discuss a wide variety of conventional machine learning and latest deep learning techniques, with particular focus on pre-trained convolutional neural networks (CNNs) such as VGG, ResNet, EfficientNet, and MobileNet. An in-depth comparative analysis is provided in the form of classification accuracy, model complexity, training time, and inference speed. Preprocessing techniques—like hair removal, image normalization, artifact removal, and data augmentation techniques like geometric and color transformations—are examined for their effectiveness in enhancing robustness, particularly on real-world datasets like HAM10000, ISIC, and PH2. In addition, the paper addresses the feasibility of executing these models on embedded hardware platforms (Raspberry Pi, Jetson Nano, Coral Edge TPU) by analyzing their TensorFlow Lite and ONNX support and the impact of model compression techniques (quantization, pruning, distillation). The final cross-comparison identifies the optimal combination of dataset, model architecture, and hardware platform for creating an inexpensive, interpretable, and real-time skin lesion detection system. The paper concludes with the key takeaways for prototyping an embedded diagnostic system for low-resource environments.en_US
dc.language.isoenen_US
dc.publisherENSTAen_US
dc.relation.ispartofseriesART-STR 03-25;ART-STR 03-25-
dc.subjectSkin canceren_US
dc.subjectskin disease detectionen_US
dc.subjectskin lesion datasetsen_US
dc.subjectdeep learningen_US
dc.subjectconvolutional neural networksen_US
dc.subjectvision transformersen_US
dc.subjectembedded systemsen_US
dc.subjectlow-cost diagnosisen_US
dc.subjectexplainable AIen_US
dc.subjectreal-time inferenceen_US
dc.subjectdata augmentationen_US
dc.subjecttransfer learningen_US
dc.subjectmobile deploymenten_US
dc.titleState of the Art of Skin Anomaly Detection Using Machine Learning Techniquesen_US
dc.typeArticleen_US
Appears in Collections:ART- Systèmes de Télécommunications et Réseaux

Files in This Item:
File Description SizeFormat 
ART-STR 03-25 BADAOUI Aymen BIBET Idris .pdfMémoire du master1.4 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.