Please use this identifier to cite or link to this item: http://dspace.ensta.edu.dz/jspui/handle/123456789/301
Title: Comparative Analysis of Random Forest, YOLO, and Classical Lookup Table-based Approaches for Sign Language Classification
Authors: Benbrahim, Tarek
OUGERIRAH, Hamida (Directeur de thèse)
Keywords: Lookup tables
sign language
Accuracy
machine learning
yolo
Random Forest
Issue Date: 2024
Publisher: ENSTA
Abstract: A comparative analysis of three sign language classification methods: random forest, YOLO (You Look On{}ce), and look-up table method , the strengths and weaknesses of each method are examined diversity in terms of accuracy, speed, flexibility.
Description: Mémoire de fin d’étude du Master: Systèmes Embarqués:Alger: Ecole Nationale Supérieure des Technologie Avancées(ex ENST): 2024
URI: http://dspace.ensta.edu.dz/jspui/handle/123456789/301
Appears in Collections:ART- Systèmes Embarqués

Files in This Item:
File Description SizeFormat 
MFE_Benbrahim_SE - Département Génie Electrique et Informatique Industrielle.pdfMémoire du Master7.56 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.