Please use this identifier to cite or link to this item:
http://dspace.ensta.edu.dz/jspui/handle/123456789/397| Title: | A Data-Driven Framework for AI-Powered LTE Network Performance Optimization |
| Authors: | ALAOUCHICHE, Abderrahmane Yaakoub KESSOUM, Mohamed Walid LAKHDARI, Kheira (Directeur de thèse) BELAHCENE, Abdelkader (Directeur de thèse) ALREME, Sifeddine (Directeur de thèse) |
| Keywords: | LTE Network Optimization Data Warehouse ETL AI ML Prophet LSTM Forecasting Multi-Vendor Networks |
| Issue Date: | 2025 |
| Publisher: | ENSTA |
| Series/Report no.: | GEII-STR 02-25;GEII-STR 02-25 GEII-STR 02-25;GEII-STR 02-25 |
| Abstract: | Optimizing modern LTE networks in multi-vendor environments such as Djezzy’s presents significant challenges. This project focuses on integrating AI-driven KPI forecasting and prediction capabilities. A scalable data warehouse with a dimensional model supports efficient KPI data management through robust ETL processes. Advanced AI models, including LSTM and Prophet, were implemented for time series forecasting to enable proactive prediction of network performance metrics. These predictions are delivered via a dedicated web page to enhance network planning and decision-making. Evaluation on real-world data demonstrates improved foresight for network operations, marking a step forward toward data-driven LTE management in complex multi-vendor contexts |
| Description: | Projet de fin d’étude d'ingeniorat: Systèmes de Télécommunications et Réseaux: Alger: Ecole Nationale Supérieure des Technologie Avancées: 2025 |
| URI: | http://dspace.ensta.edu.dz/jspui/handle/123456789/397 |
| Appears in Collections: | ING- Systèmes de Télécommunications et Réseaux |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| GEII-STR 02-25 PFE- Alaouchiche et Kessoum - LAKHDARI Keira.pdf | Projet d'ingeniorat | 28.79 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.