Please use this identifier to cite or link to this item: http://dspace.ensta.edu.dz/jspui/handle/123456789/299
Title: A Digital Twin Design Applied to a Photovoltaic Conversion System
Authors: Touileb, Mohammed Islam
YAICHE, Fahem
ZAOUI, Abdelhalim (Directeur de thèse)
AKEL, Fethi (Directeur de thèse)
Keywords: Digital Twin
Photovoltaic Conversion Chain
LSTM Model
Short-Term Forecasting
Performance Optimiza- tion
Electrical Parameters
Issue Date: 2024
Publisher: ENSTA
Abstract: This article presents the creation of a digital twin for a photovoltaic conversion chain and proposes a predictive model for the electrical parameters of this chain using the LSTM (Long Short-Term Memory) model. The digital twin enables accurate, real-time simulation of the photovoltaic system, integrating short- term forecasting to optimize performance. The LSTM model is employed to predict critical electrical parameters such as DC current, DC voltage, AC current, and AC voltage, based on environmental and electrical data collected. The study demon- strates that the LSTM model can effectively capture temporal dependencies and provide accurate predictions, contributing to better management and optimization of the photovoltaic system. The results show excellent model performance with minimal errors, and the article discusses the challenges related to the observed discrepancies as well as opportunities to improve forecast accuracy.
Description: Mémoire de fin d’étude du Master: Automatique et Informatique Industrielle/ Alger: Ecole Nationale Supérieure des Technologie Avancées(ex ENST): 2024
URI: http://dspace.ensta.edu.dz/jspui/handle/123456789/299
Appears in Collections:ART- Automatique et Informatique Industrielle

Files in This Item:
File Description SizeFormat 
MFE YAICHE et TOUILEB - ZAOUI Abdelhalim.pdfMémoire du master606.61 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.